Pulickel M. Ajayan, Linda S. Schadler, Paul V. Braun

Nanocomposite Science and Technology
Contents

1 Bulk Metal and Ceramics Nanocomposites 1
 Pulickel M. Ajayan

1.1 Introduction 1

1.2 Ceramic/Metal Nanocomposites 3

1.2.1 Nanocomposites by Mechanical Alloying 6

1.2.2 Nanocomposites from SolGel Synthesis 8

1.2.3 Nanocomposites by Thermal Spray Synthesis 11

1.3 Metal Matrix Nanocomposites 14

1.4 Bulk Ceramic Nanocomposites for Desired Mechanical Properties 18

1.5 Thin-Film Nanocomposites: Multilayer and Granular Films 23

1.6 Nanocomposites for Hard Coatings 24

1.7 Carbon Nanotube-Based Nanocomposites 31

1.8 Functional Low-Dimensional Nanocomposites 35

1.8.1 Encapsulated Composite Nanosystems 36

1.8.2 Applications of Nanocomposite Wires 44

1.8.3 Applications of Nanocomposite Particles 45

1.9 Inorganic Nanocomposites for Optical Applications 46

1.10 Inorganic Nanocomposites for Electrical Applications 49

1.11 Nanoporous Structures and Membranes: Other Nanocomposites 53

1.12 Nanocomposites for Magnetic Applications 57

1.12.1 Particle-Dispersed Magnetic Nanocomposites 57

1.12.2 Magnetic Multilayer Nanocomposites 59

1.12.2.1 Microstructure and Thermal Stability of Layered Magnetic
 Nanocomposites 59

1.12.2.2 Media Materials 61

1.13 Nanocomposite Structures having Miscellaneous Properties 64

1.14 Concluding Remarks on Metal/Ceramic Nanocomposites 69
2 Polymer-based and Polymer-filled Nanocomposites

Linda S. Schadler

2.1 Introduction 77

2.2 Nanoscale Fillers 80

2.2.1 Nanofiber or Nanotube Fillers 80

2.2.1.1 Carbon Nanotubes 80

2.2.1.2 Nanotube Processing 85

2.2.1.3 Purity 88

2.2.1.4 Other Nanotubes 89

2.2.2 Plate-like Nanofillers 90

2.2.3 Equi-axed Nanoparticle Fillers 93

2.3 Inorganic FillerPolymer Interfaces 96

2.4 Processing of Polymer Nanocomposites 100

2.4.1 Nanotube/Polymer Composites 100

2.4.2 Layered FillerPolymer Composite Processing 103

2.4.2.1 Polyamide Matrices 107

2.4.2.2 Polymide Matrices 107

2.4.2.3 Polypropylene and Polyethylene Matrices 108

2.4.2.4 Liquid-Crystal Matrices 108

2.4.2.5 Polymethylmethacrylate/Polystyrene Matrices 108

2.4.2.6 Epoxy and Polyurethane Matrices 109

2.4.2.7 Polyelectrolyte Matrices 110

2.4.2.8 Rubber Matrices 110

2.4.2.9 Others 111

2.4.3 Nanoparticle/Polymer Composite Processing 111

2.4.3.1 Direct Mixing 111

2.4.3.2 Solution Mixing 112

2.4.3.3 In-Situ Polymerization 112

2.4.3.4 In-Situ Particle Processing Ceramic/Polymer Composites 112

2.4.3.5 In-Situ Particle Processing Metal/Polymer Nanocomposites 114

2.4.4 Modification of Interfaces 117

2.4.4.1 Modification of Nanotubes 117

2.4.4.2 Modification of Equi-axed Nanoparticles 118

2.4.4.3 Small-Molecule Attachment 118

2.4.4.4 Polymer Coatings 119

2.4.4.5 Inorganic Coatings 121

2.5 Properties of Composites 122

2.5.1 Mechanical Properties 122

2.5.1.1 Modulus and the Load-Carrying Capability of Nanofillers 122

2.5.1.2 Failure Stress and Strain Toughness 127

2.5.1.3 Glass Transition and Relaxation Behavior 131

2.5.1.4 Abrasion and Wear Resistance 132

2.5.2 Permeability 133

2.5.3 Dimensional Stability 135
2.5.4 Thermal Stability and Flammability 136
2.5.5 Electrical and Optical Properties 138
2.5.5.1 Resistivity, Permittivity, and Breakdown Strength 138
2.5.5.2 Optical Clarity 140
2.5.5.3 Refractive Index Control 141
2.5.5.4 Light-Emitting Devices 141
2.5.5.5 Other Optical Activity 142
2.6 Summary 144

3 Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites 155

Paul V. Braun

3.1 Introduction 155
3.2 Natural Nanocomposite Materials 157
3.2.1 Biologically Synthesized Nanoparticles 159
3.2.2 Biologically Synthesized Nanostructures 160
3.3 Biologically Derived Synthetic Nanocomposites 165
3.3.1 Protein-Based Nanostructure Formation 165
3.3.2 DNA-Templated Nanostructure Formation 167
3.3.3 Protein Assembly 169
3.4 Biologically Inspired Nanocomposites 171
3.4.1 Lyotropic Liquid-Crystal Templating 178
3.4.2 Liquid-Crystal Templating of Thin Films 194
3.4.3 Block-Copolymer Templating 195
3.4.4 Colloidal Templating 197
3.5 Summary 207

4 Modeling of Nanocomposites 215
Catalin Picu and Pawel Keblinski

4.1 Introduction The Need For Modeling 215
4.2 Current Conceptual Frameworks 216
4.3 Multiscale Modeling 217
4.4 Multiphysics Aspects 220
4.5 Validation 221

Index 223
Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The idea behind Nanocomposite is to use building blocks with dimensions in nanometre range to design and create new materials with unprecedented flexibility and improvement in their physical properties.